

Mondays with MATLAB Hands on workshop

Deep Learning on Alvis - the Al Cluster

Emelie Andersson, Application Engineer, MathWorks
Sagar Zade, Customer Success Engineer, MathWorks
Rohit Agrawal, Customer Success Engineer, MathWorks
Anders Sjöström, National Co-ordinator and Application Expert at SNIC, Lund University

How can you participate?

You have three options:

- 1. Run exercises yourself on Alvis (you need to have SNIC and Alvis credentials)
- Run exercises on your own computer (if you don't have access to Alvis, but access to MATLAB)

Download exercise material: https://tinyurl.com/4je3v6vm

Username: AppleHill Password: fjr5n8nf

3. Get your popcorn and just follow along

What's Alvis?

"The Alvis cluster is a national SNIC resource dedicated for **Artificial Intelligence** and **Machine Learning** research. The system is built around Graphical Processing Units (GPUs) accelerator cards and consists of several types of compute nodes with multiple Nvidia GPUs."

Set-up Instructions for Alvis

- Login to Chalmers VPN
- Login to Alvis using Thinlinc
 - alvis1.c3se.chalmers.se
 - Alvis specific username and password
- Open terminal window
 - Copy workshop material:
 - cp -r /cephyr/users/andeeme/ExerciseFilesDLWorkshop .
 - Get on a compute node:
 - interactive --reservation=matlab-monday -n8 -t 03:00:00
- Start MATLAB (from terminal)
 - module load MATLAB/R2021a
 - srun -A SNIC2021-7-61 -t 03:00:00 -gpus-per-node=T4:1 --x11 -pty matlab

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Deep Learning?

12	0	100%
40.0%	0.0%	0.0%
0	18	100%
0.0%	60.0%	0.0%
100%	100%	100%
0.0%	0.0%	0.0%

Some Basic Definitions

Some Basic Definitions

Artificial Intelligence

The ability of

Machine Learning

The practice of **learning a task from data without** relying on a predetermined equation or model

Some Basic Definitions

Artificial Intelligence

Machine Learning

Deep Learning

A **type** of machine learning based on **neural networks**

Machine Learning & Deep Learning

- Ability to learn from data inherently without being explicitly programmed
 - Learns complex non-linear relationship
 - More Data = better model

Machine Learning

Deep
Learning

Neural Network Structure

- Deep neural networks have many layers
- Data is passed through the network, and the layer parameters are updated (training)

Machine Learning and Deep Learning Datatypes

Signal

Numeric

AgeCat

WeightQ

Under 30	Q1	6	123.17	79.667
Under 30	Q2	3	120.33	79.667
Under 30	Q3	2	127.5	86.5
Under 30	Q4	4	122	78
30-39	Q1	12	121.75	81.75
30-39	Q2	9	119.56	82.556
30-39	Q3	9	121	83.222
30-39	Q4	11	125.55	87.273
Over 40	Q1	7	122.14	84.714
Over 40	Q2	13	123.38	79.385
Over 40	Q3	14	123.07	84.643
Over 40	Q4	10	124.6	85.1

GroupCount

mean BloodPressure

Text

University

Deep Learning and AI in Research

Reinforcement Learning for Robotic Arm

Augmented Reality of blood flow

Deep Learning for Tumor Detection

Neural Networks simulate tornadic wind load

University

Deep Learning Networks Take in Numeric Data

199	206	208	201	188	178	165	164	180
202	205	202	188	176	169	178	186	183
203	206	189	178	181	183	182	154	87
203	192	184	186	177	167	153	181	192
191	182	176	166	153	141	136	180	227
166	165	154	154	138	137	169	170	211
158	150	145	183	144	156	158	154	179
143	51	98	144	129	130	143	178	123
107	50	33	95	152	173	192	159	87
104	100	84	120	132	172	131	64	94
119	101	97	81	90	109	87	106	111
127	122	110	97	108	120	133	131	134
111	117	108	119	131	143	146	141	156
126	122	113	119	139	142	155	161	151
129	126	130	111	103	130	149	149	156
138	128	136	144	136	129	134	122	145
154	133	134	141	168	150	126	127	151

Images are a numeric matrix

Signals are numeric vectors

The Bird Flies = [0 13 5 6]
The Leaf Is Brown = [13 3 11 2]

Text is processed as numeric vectors

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Exercise 1 – Deep Learning in 6 Lines of Code

- Run runMeFirst.mlx
- Open work_deeplearningin6lines.mlx in 01-DeepLearning101 folder
- Add load alexnet.mat at the top to read network
- If you have an account on Alvis, or running on your own computer – Go to the **breakout room** and finish the exercise
- If you don't have a MATLAB in front of you follow along in Main Room. Let's do the exercise together!

```
% Load the AlexNet neural network
load alexnet.mat;
net = alexnet;
```


Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Creating Layer Architectures

- Convolutional Neural Networks CNN
- Special layer combinations which learn parameters to classify images
- Convolution Layer
- ReLU Layer
- Max Pooling Layer

Convolution Layers Search for Patterns

These patterns would be common in the number 0

All patterns are compared to the patterns on a new image

- Pattern starts at left corner Perform comparison Slide over one pixel
- Reach end of image
- Repeat for next pattern

Good pattern matching in convolution improves chances that object will classify properly

- This image would not match well against the patterns for the number zero
- It would only do very well against this pattern

Activation: Rectified Linear Units Layer (ReLU)

Converts negative numbers to zero

-1	0	5	4
3	-4	-8	3
1	4	6	-5
-2	-5	4	1

0	0	5	4
3	0	0	3
1	4	6	0
0	0	4	1

Max Pooling is a down-sampling operation

Shrink large images while preserving important information

1	0	5	4
3	4	8	3
1	4	6	5
2	5	4	1

2x2 filters	4	8
Stride Length = 2	5	6

Classification Problems End with 3 Layers

- Fully Connected Layer
 - Looks at which high-level features correspond to a specific category
 - Calculates scores for each category (highest score wins)
- Softmax Layer
 - Turns scores into probabilities.

- Classification Layer
 - Categorizes image into one of the classes that the network is trained on

Note: Regression problems end with a fully connected layer and regression layer

3 Components to Train any Network

"How much data do I need?"

It depends on the complexity of the problem...
Is it complex?
Then a lot

Define inputs and layers for deep learning model

Influence training time and accuracy

- Solver Type
- Initial Learn Rate
- Minibatch Size
- Max Epochs
- •

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Exercise 2 – Create a network from scratch

- Open work_DeepLearningFormScratch.mlx in 02-DeepLearningFromScratchUsingCNN folder
- If you have an account on Alvis, or running on your own computer – Go to the breakout room and finish the exercise
- If you don't have a MATLAB in front of you follow along in Main Room. Let's do the exercise together!

Task:

Create a network that can differentiate between different blood parasites

Workflow:

- Read in data from a folder
- Analyze the data
- Set up a CNN network
- Train network
- Test network

Transfer Learning Workflow

Transfer Learning Workflow

Exercise 3 – Transfer Learning

- Open work_DeepLearningTransferLearning.mlx in 03-TransferLearningWithCNN folder
- If you have an account on Alvis, or running on your own computer – Go to the breakout room and finish the exercise
- If you don't have a MATLAB in front of you follow along in Main Room. Let's do the exercise together!

Task:

Create a network that can differentiate between different blood parasites using a pretrained network

Workflow:

- Read in data from a folder
- Read in pretrained network
- Change layers in the network
- Train network
- Test network

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Why is my neural network giving me "incorrect" results?

Data

- Is there enough data?
- Do we have the **right** data for the application?
- What about the quality of the data?
- Is data augmentation in use?

Neural Network Architecture

- What layers are being used and why?
- Are the appropriate layers being used for the application?
- Is there normalization and/or regularization?
- Are you validating during training to check for overfitting?

Parameters and Their Settings

- What parameters are present?
- Were the batch size, learn rate, weights, and other values on "default"?

Exercise 4 – Improving Network Accuracy

- Open
 work_DeepLearningImprovingAccuracy.mlx
 in 04-ImprovingNetworkAccuracy folder
- If you have an account on Alvis, or running on your own computer – Go to the breakout room and play around with different settings
- If you don't have a MATLAB in front of you follow along in Main Room. Let's do the exercise together!

Hyperparameter Tuning in Deep Learning

"The challenge with hyperparameters is that there are no magic number that works everywhere. The best numbers depend on each task and each dataset."

Source

Hyperparameter tuning using Bayesian Optimization

Experiment Manager

Agenda

Introduction

Exercise 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

Break

Exercise 2 & 3: Classify blood smear images

Break

Exercise 4: Improving Network Accuracy

Conclusion

Home Exercises

Try LSTM models for time series data:

- Classify heart status based on ECG signals
- work_ClassifyECGSignals.mlx
- https://sft.mathworks.com/human.aspx?r=245144200&arg06=7
 76492647-15764732a8bb11675e2f947023798fa0&arg12=filelist
- Username: AppleHill Password: fjr5n8nf

Try a larger dataset for GPU speed up on Alvis:

- Classify pixels in a Semantic Segmentation problem
- https://se.mathworks.com/help/vision/ug/semantic-segmentation-using-deep-learning.html
- ~5 hours training time on a low performing GPU. What can you get on the Tesla v100??

Further Learning and Teaching

- Deep Learning Onramp
 - 2 hr online tutorial
- Deep Learning with MATLAB selfpaced course
 - >14 hours interactive tutorial
- Deep Learning Workshop
 - 3 hr hands on session
 - Contact us to schedule
- Deep Learning Training
 - 16 hr in depth course
 - Online or Instructor Lead
- Teaching Deep Learning with MATLAB
 - Curriculum support

Good Luck with the home exercises!