

Ing. Florin Manaila

Senior Architect and Inventor Cognitive Systems (HPC and Deep Learning) IBM Systems Hardware Europe Member of the IBM Academy of Technology (AoT)

Lund, March 21, 2019

By OpenPOWER Academia

OpenPOWER™

AGENDA

10:00 - 10:45:	
10:45 - 11:15:	
11:15 – 11:30:	

- : Break
- 11:30 12:00: Accelerated Inferencing Xilinix
- 12:00 13:00: Lunch
- 13:00 13:30: IBM PowerAI and AC922 deep learning system

OpenPOWER and POWER9 features

Accelerated Interconnect - Mellanox

- 13:30 14:00: IBM PowerAI Large Model Support (LMS) and Distributed Deep Learning (DDL)
- 14:00 15:15: Hands on Exercises (PowerAl Vision, PowerAl TF, Pytorch, SnapML, Rapids cuDF, Rapids cuML, BYOC)
- 15:15 15:30: Break
- 15:30 17:00: Hands on Exercises (PowerAl Vision, PowerAl TF, Pytorch, SnapML, Rapids cuDF, Rapids cuML, BYOC)

OpenPOWER Foundation

The OpenPOWER Foundation is an **open technical community** enabling **collaborative development** on top of the POWER architecture, providing opportunity for **member differentiation** and industry growth.

OpenPOWER

Why OpenPOWER[™]

Why OpenPOWER

Market Shifts

Moore's Law

Workload Demands Up

Numerous IT consumption models

Mature Open software ecosystem Why OpenPOWER[™]

Market Shifts

Moore's Law

Workload Demands Up Numerous IT consumption models

Mature Open software ecosystem

Strategy

Vibrant ecosystem through open development

Accelerated innovation through collaboration of partners

Amplified capabilities driving industry performance leadership

Why OpenPOWER[™]

Market Shifts

Moore's Law

Workload Demands Up Numerous IT consumption models

Mature Open software ecosystem

Strategy

Vibrant ecosystem through open development

Accelerated innovation through collaboration of partners

Amplified capabilities driving industry performance leadership

Industry Adoption + Open Choice

Cloud Computing Hyperscale & Large scale Datacenters

High Performance Computing & Analytics

Domestic IT Agendas

Why OpenPOWER The Processor is No Longer the Only Source of IT Innovation

Performance / \$

Moore's Law Not Holding Up

2000

Why OpenPOWER Next Gen Data Centers Depends on Performance per \$ Innovation from:

Performance / \$

They're Closing the Gap

2020

I/O Attach

Storage

Accelerators

Memory

2000

Why OpenPOWER[™] Data holds competitive value

Optimization for the Cognitive Era

3 Strategic Tenets

Software and Hardware Co-optimization for the entire Data journey of AI workloads

Built on industry leading accelerated technologies

Deployed and delivered via a cloud operational model

Google

● Open POWER

Founding Members 2013

Vision > Execution > Adoption

Incorporated – Dec 2013

OpenPOWER Summit – March 2015

300+ Members – July 2017

OpenPOWER[™] —

Ecosystem

© 2018 OpenPOWER Foundation

© 2018 OpenPOWER Foundation

343+ Members

> **34** Countries

> > 70+ ISVs

343+ Members

> **34** Countries

70+

Active Membership From All Layers of the Stack **100k+** Linux Applications Running on Power

2300 ISVs Written Code on Linux

343+ Members

70+

Active Membership From All Layers of the Stack

Partners

Systems

to Market

Bring

100k+ Linu Run

Linux Applications Running on Power

2300 ISVs Written Code on Linux

150+

OpenPOWER Ready Certified Products

20+

Systems Manufacturers

40+

POWER-based systems shipping or in development

100+

Collaborative innovations under way

OpenPOWER Foundation Membership Trend

This Ecosystem of Innovators Creates True Differentiation in Performance and Cost

Growing Ecosystem Of **OpenPOWER Servers**

Growing Ecosystem Of OpenPOWER Innovation

Ecosystem Driven Customer Choice

Enables OpenPOWER to meet the market demands by...

... enabling Al Enterprises with offerings optimized for Al

ki∩≘tico
PowerAl theano
★ torch
★ TensorFlow ™

... collaborating in Building

Hyperscale Datacenters with technology partners

with cloud and software partners

Cross community Collaboration is essential

	orchestration identity compute/network/storage fabric	OpenPOWER
Open Stack	applications drivers	((5)
	kernel memory/cpus	OpenBMC
Linux	interconnects protocols	
OpenCAPI [™]	firmware electrical	
	mechanical	Open Compute

...as is the option of an entirely Open software, firmware and hardware stack

Linux support for POWER

✓ Same source and distribution release schedules as x86 Simplified x86 application migration with little endian distributions

Enterprise support for all three from IBM or distributors

debian

Open All The Way Down:

Hardware + Software + Developers Community Feedback

Altering the status quo in our industry:

Novel + Community-Driven Solutions to Very Difficult Problems

What's Special about OpenPOWER?

POWER Processor Roadmap

	POWER7 A	rchitecture	POWER8 A	rchitecture	POV	VER9 Archited	cture	POWER10	
	2010 POWER7 ^{8 cores} 45nm	2012 POWER7+ ^{8 cores} 32nm	2014 POWER8 12 cores 22nm	2016 POWER8 w/ NVLink 12 cores 22nm	2017 P9 SO ^{24 cores} 14nm	2018 P9 SU ^{24 cores} 14nm	2019 P9 w/ Adv. I/O ^{24 cores} 14nm	2020+ P10 TBD cores	
	New Micro- Architecture	Enhanced Micro- Architecture	New Micro- Architecture	Enhanced Micro- Architecture With NVLink	New Micro- Architecture Direct attach	Enhanced Micro- Architecture	Enhanced Micro- Architecture	New Micro- Architecture	
	New Process Technology	New Process Technology	New Process Technology		memory New Process Technology	Memory	New Memory Subsystem	New Technology	
Sustained Memory Bandwidth	Up To 65 GB/s	Up To 65 GB/s	Up To 210 GB/s	Up To 210 GB/s	Up To 150 GB/s	Up To 210 GB/s	Up To 350 GB/s	Up To 435 GB/s	
Standard I/O Interconnect	PCle Gen2	PCle Gen2	PCle Gen3	PCle Gen3	PCIe Gen4 x48	PCle Gen4 x48	PCIe Gen4 x48	PCle Gen5	
Advanced I/O Signaling	N/A	N/A	N/A	20 GT/s 160GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	32 & 50 GT/s	
Advanced I/O Architecture	N/A	N/A	CAPI 1.0	CAPI 1.0 , NVLink 1.0	CAPI 2.0, OpenCAPI3.0, NVLink2.0	CAPI 2.0, OpenCAPI3.0, NVLink2.0	CAPI 2.0, OpenCAPI4.0, NVLink	TBD	

Statement of Direction, Subject to Change

POWER9 – Data Capacity & Throughput

Big Caches for Massively Parallel Compute and Heterogeneous Interaction

L3 Cache: 120 MB Shared Capacity NUCA Cache

- 10 MB Capacity + 512k L2 per SMT8 Core
- Enhanced Replacement with Reuse & Data-Type Awareness
 - 12 x 20 way associativity

Extreme Switching Bandwidth for the Most Demanding Compute and Accelerated Workloads

High-Throughput On-Chip Fabric

- Over 7 TB/s On-chip Switch
- Move Data in/out at 256 GB/s per SMT8 Core

POWER9 SO with Advanced Accelerator Attach

24 newly designed POWER9 cores

• Leveraging execution slices for improved performance on cognitive, analytic, and big-data applications

Large, low-latency, eDRAM cache for big datasets

Global Foundries 14HP FinFET technology with eDRAM: 8B transistors

Cloud-focused innovation in Energy Efficiency, Security, and Quality of Service

State-of-the-art IO PCIe Gen 4: 48 lanes

Leadership platforms for hardware acceleration

- High bandwidth, GPU interconnect (NV link2.0)
- Next-generation CAPI2.0 interface for coherent accelerator and storage attach
- On-chip compression & cryptography accelerators
- New 25Gb/s advanced accelerator attach bus

1st chip in POWER9 family

- Optimized for 2 socket scale out servers & hyperscale datacenters
- DDR4 direct attach: 8 memory channels, >120 GB/s Sustained

Full POWER9 family will address a broad range of scale out & enterprise servers

1. Accelerators: The performance, virtual addressing

and coherence capabilities allow FPGA and ASIC accelerators to behave as if they were integrated into a custom microprocessor.

2. Coherent Network

Controller: OpenCAPI provides the bandwidth that will be needed to support rapidly increasing network speeds Network controllers based on virtual addressing can eliminate software overhead without the programming complexity usually associated with user-level networking protocols.

3. Advanced Memory:

OpenCAPI allows system designers to take full advantage of emerging memory technologies to change the economics of the datacenter.

4. Coherent Storage

Controller: OpenCAPI allows storage controllers to bypass kernel software overhead, enabling extreme IOPS performance without wasting valuable CPU cycles.

Workload Accelerators + POWER9

Reconfigurable hardware Task customized Low latency & power

Uses:

- Compression
- Encryption
- high speed streaming search
- Monte Carlo simulations

NVIDIA NVLink

Uses:

- Deep Neural Networks
- Speech Recognition
- Chemistry Simulations
- JAVA
- Hadoop
- Graphics

1000s of simple cores High bandwidth, floating point, and parallelism

Compute Accelerators

Network & Storage Attach

CAPI Coherent Accelerator Processor Interface

Enables applications not possible on I/O Removes device driver and it's code stack

Who is using OpenPOWER and How?

"We're declaring this Zaius platform to be Google Strong" – Máire Mahony, Google

Source: https://openpowerfoundation.org/wp-content/uploads/2018/04/Maire-Mahony.pdf

More Memory Bandwidth

Kelp QoS for Accelerated ML Systems - ISCA 2018 Submission Source: Haishan Zhu, David Low

Google Cloud

MiHawk can install up to twenty-four NVMe U.2 drives and could reach up to 80GB/s on optimal IO bandwidth

https://openpowerfoundation.org/wp-content/uploads/2018/06/MiHawk-down.pdf

Who is using OpenPOWER and How?

Tencent腾讯

"With adoption of OpenPOWER the overall efficiency has improved by more than 30% more performance @ 30% less rack and server resources."

3x vs x86 4 World Records

Spark Terasort In recent results running former x86

infrastructure, with 2/3rd fewer servers.

512x SuperMicro POWER8 servers

C-J Alibaba Cloud

"OpenPOWER servers are available on the Ali X-Dragon Cloud platform for pilot programs."

PayPal

"IBM Power System and PowerAI helped PayPal to accelerate the deep learning research on Fraud Prevention problems by unlocking the computation power on extra large datasets with the Power architecture." - PayPal Data Science Team

Summit Overview

Compute Node

2 x POWER9 6 x NVIDIA GV100 NVMe-compatible PCIe 1600 GB SSD

25 GB/s EDR IB- (2 ports) 512 GB DRAM- (DDR4) 96 GB HBM- (3D Stacked) **Coherent Shared Memory**

Compute Rack

18 Compute Servers Warm water (70°F direct-cooled components) RDHX for air-cooled components

39.7 TB Memory/rack 55 KW max power/rack

The List.

Compute System

10.2 PB Total Memory 256 compute racks 4,608 compute nodes Mellanox EDR IB fabric 200 PFLOPS ~13 MW

GPFS File System 250 PB storage 2.5 TB/s read, 2.5 TB/s write

#1 JUNE 2018

NVIDIA GV100

• 7 TF

Components

IBM POWER9

4 Threads/core

22 Cores

NVLink

- 16 GB @ 0.9 TB/s
- NVLink

Open Allows You To Create What You Need

The Foundation Workgroups Focused on a Range of Areas

- Hardware Specific
- Compliance
- Industries
- ...and more

Accelerates Infrastructure Standards

© 2017 OpenPOWER Foundation

13 OpenPOWER Work Groups	Collaboration	Work Product
Application and Domain Focused		
Integrated Solutions WG	Unique needs for	
Personalized Medicine WG	specific applications /	Solution frameworks and optimization guidance
WG for Physical Sciences	Solutions	
Machine Learning WG		
Interoperability and Inclusion		
OpenPOWER Ready WG	Ensure ecosystems solutions work together	Ready Definition and Criteria
Compliance WG	· · · · · · · · · · · · · · · · · · ·	Compliance Specs
System Interfaces for Innovation		
Memory WG	Defining standards for	OpenPOWER Memory Bus Spec
Accelerator WG	developing and integrating innovative	PSL/AFU Interface Spec, CAPI SNAP
FRU Service Interface Spec WG		FSI Specification
Input/Output WG	nardware subsystems	Porting guide, testing guides, etc.
25GIO Interoperability Mode WG		25GIO Interoperability Spec
Fundamental System Architecture	HW and SW Stack for	
System Software WG	System Architecture and	ELFv2 ABI, LoPAPR
HW Architecture WG	Interoperability	ISA Profile, IODA, CAIA
SP010 – Tyan OpenPOWER Customer Reference System CAPI – Coherent Accelerator Processor Interface	AFU – Accelerator Function Unit FSI – Field Replaceable Unit (FRU) Service	OPMB – OpenPOWER Memory Bus SDK – Software Developer Kit Interface ABI – Application Binary Interface